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Abstract

In a previous paper we considered the intersection of a sphere and an ellipsoid using rectangular coordinates. In this
paper we use a different approach based on using parametric coordinates and the use of a graphics program GInMA in
order to gain further insight into this problem. As in our previous paper, we determine the surface area of the respective
portions of  the ellipsoid and the sphere that  are inside each other.  We provide examples  to illustrate the various
possibilities that arise and we provide Maple worksheets that can be used to deal with the calculations that must be
performed. The task of the present paper is the derivation of the equations that allow us to represent graphically the
solid of intersection and to calculate its surface area accurately and efficiently. We choose a system of coordinates with
the origin at  the center of  the sphere  and its axis directed  toward  the center of  a spherical  piece of  the solid of
intersection. We examine a variable step-size integration method. For an accuracy of approximately 10–6,  100 to 600
calculation points are typically sufficient and a typical calculation time is less than a minute.

1 Problem Statement

We consider the equation of an ellipsoid centered at the point O(0,0,0) in matrix form

X⃗ T A X⃗ −1=0 , where A=(
a−2

0
0

0
b−2

0

0
0

c−2) , X⃗ =(
x
y
z). (1)

When it proves convenient, we use the ellipsoid in its scalar form x2

a2+
y2

b2+
z2

c2−1=0. We use a

sphere of radius  r centered at a point  X⃗ 0
T
=(x0 , y0 , z0)=(k , l ,m) . We assume the center of the

sphere is inside the  first quadrant,  where x0≥0, y0≥0 , z 0≥0 and that it is outside the ellipsoid.
The z axis is chosen so that the ellipsoid vertex (0 ,0 , c) is the vertex closest to point X⃗ 0 . We
construct the solid of intersection of the sphere and the ellipsoid, render it, and find the surface area
of the solid of intersection.

2 Possible Values of the Sphere Radius

Let d be the  distance from X⃗ 0 to the ellipsoid and let D be the greatest distance between
X⃗ 0 and  points  on  the  ellipsoid.  A nontrivial  solution  is  possible  for  our  problem  only  if
d < r< D . To  find d and D , we  use  Lagrange’s  method  for  finding  extrema.  Finding

conditional extrema of the function ( X⃗ − X⃗ 0)
2 under the condition X⃗ T A X⃗ −1=0 is equivalent
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to  considering the  critical  points  for the  function ƒ( X⃗ ,λ)=( X⃗ − X⃗ 0)
2
+ λ( X⃗ T A X⃗ −1) . The

equation for finding λ is expressible in the form of

x0
2

(a+ λ
a
)

2+
y0

2

(b+ λ
b
)

2+
z0

2

(c+ λ
c
)

2=1. (2)

This equation is of sixth degree in λ . Since the center of the sphere is outside the ellipsoid; the
equation has at least two real solutions but no more than 6 solutions. In this paper we consider the
cases of two and four real roots. The equation (2) and [3] allow us to find the feet of perpendiculars
dropped from the center of the sphere to the ellipsoid

 X⃗ H i
=( x0

1+λ i a
−2 ,

y0

1+λ i b
−2 ,

z 0

1+λ i c
−2). (3)

These feet yield the radii  of the sphere | X⃗ Н i
− X⃗ 0 | at points of tangency. The radius increases

when λ decreases. Therefore,  corresponds  to  the  largest  and D corresponds  to  the  smallest
permissible values of λ . Intermediate values of λ determine points of self-intersection  on the
curve of intersection of the sphere and ellipsoid. We use the locus of points X⃗ on the surface of
the ellipsoid such that the normals at these points lie on a plane containing the centers of the sphere
and  the  ellipsoid,  that  is,  on  the  plane O X⃗ X⃗ 0 . The  equation  of  such  points  is  given  by
( X⃗ − X⃗ 0) X⃗ X⃗ 0=0. In  accordance  with  ([1],  section  3.5.10,  equation 3.5-22  of  page  82) we

denote the coordinates of the ellipsoid by

{
x=a sin u cosv ,
y=b sin u sin v ,

z=ccos u .

For some values of λ , the intersection curve is self-intersecting which we discuss in detail in
Section  6.6. In  the  coordinates  of  the  ellipsoid  we  obtain  the  following  curve  which  has  two
branches:

c (a2
−b2

)z 0 tan u=
a (c2

−b2
) x0

cosv
+

b (a2
−c2

) y0

sin v
. (4)

3 Intersection curve of the surfaces

The main difficulty in the construction of the intersection curve is associated with changes in the
number of roots of the equation determining the curve when the parameters of the problem are
changed. We try to choose a coordinate system so that the solution is unique. We use the following
approach. Let  the  zenith  of  the  spherical  coordinate  system pass  inside  the  intersection  curve
through the center of the spherical part. In other words, let the points on the sphere corresponding to
θ=π and zenith θ=0 be divided by the intersection curve. Then for each ϕ in the interval
ϕ ∈[ 0,2π ) there is exactly one value of θ (ϕ )∈(0,π ). In this case it is easy to find points of

the intersection curve on the sphere.  The points are converted using internal coordinates of the
ellipsoid. It is intuitively clear that the calculation accuracy of the spherical piece area increases if
the axis passes near the center of the spherical piece. It is clear that for r≈d the axis must pass
through point X⃗ Н (d ) , and for r≈D the axis must pass through the point X⃗ Н (D) . For the

axis of the coordinate system for the sphere,  a unit  vector  is  in the direction  of X⃗ 0 A⃗ , where

А⃗= X⃗ H (d )+( X⃗ H (D)− X⃗ H (d ))
r−d
D−d

. In complex cases such as the one discussed in Section 6.6
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we choose a point A manually. For the basis of the coordinate system X ' we choose the center of
the sphere to be X⃗ 0 . The axis of the coordinate system X ' (x ' , y ' , z ' ) contains vectors

V⃗ 1=V⃗ 3V⃗ 2 ,V⃗ 2 , V⃗ 3 , where V⃗ 3=
А⃗− X⃗ 0

| А⃗− X⃗ 0 |
,  V⃗ 2=(V⃗ 3 y ,−V⃗ 3x ,0) .             (5)

The corresponding transformed coordinate system has the form

X⃗ =M X⃗ '+ X⃗ 0 , where M=(V⃗ 1 , V⃗ 2 , V⃗ 3). (6)

The equation of the ellipsoid is found by substituting (6) into (1):

X⃗ 'T M T A M X⃗ '+ 2 X⃗ 0
T A M X⃗ '+ X⃗ 0

T A X⃗ 0−1=0 . (7)

We write the ellipsoid in the scalar form

a11( x ' 2
)+a22( y ' 2

)+a33(z ' 2
)+2(a12 x ' y '+a13 x ' z '+a23 y ' z '+a10 x '+a20 y '+a30 z ' )+a00r 2

=1 ,

where a ij=U i
T U j ,U 0

T
=(

x0

a r
,

y0

b r
,

z0

cr
) ,U i

T
=(

V ix

a
,
V iy

b
,
V iz

c
).

In other words, a11=
V 1 x

2

a2 +
V 1 y

2

b2 +
V 1 z

2

c2 , a22=
V 2 x

2

a2 +
V 2 y

2

b2 +
V 2 z

2

c2 , a33=
V 3 x

2

a2 +
V 3 y

2

b2 +
V 3 z

2

c2 ,

a12=
V 1x V 2 x

a2 +
V 1 y V 2 y

b2 +
V 1z V 2z

c2 , a13=
V 1x V 3 x

a2 +
V 1 y V 3 y

b2 +
V 1z V 3z

c2 ,

a23=
V 2 x V 3 x

a2 +
V 2 y V 3 y

b2 +
V 2z V 3 z

c2 , a10=
x0 V 1 x

a2 r
+

y0 V 1 y

b2 r
+

z0 V 1 z

c2 r
,

a20=
x0 V 2 x

a2 r
+

y0V 2 y

b2 r
+

z0 V 2 z

c2 r
,a30=

x0V 3x

a2 r
+

y0 V 3 y

b2 r
+

z0 V 3 z

c2 r
,and a00=

x0
2

a2 r2 +
y0

2

b2 r 2+
z0

2

c2 r2 . (8)

Using the substitution ([1], section 3.1.6, equation 3.1-3 of page 60) {
x '=r sinθ cosϕ ,
y '=r sinθ sinϕ ,

z '=r cosθ ,
           (9)

we obtain the following equations relating θ and ϕ :

a11sin2θ cos2ϕ +a22sin2θ sin2ϕ+a33cos2θ +2(a12sin2θ sinϕ cosϕ +a13sinθ cosθ cosϕ )+

+2(a23sinθ cosθ sinϕ +a10sinθ cosϕ +a20 sinθ sinϕ+a30cosθ )+a00=0 ,

sin2θ (a11cos2ϕ +a22sin2ϕ +2a12sinϕ cosϕ )+a33 cos2θ +2sinθ cosθ (a13 cosϕ+a23sinϕ )+

+2sinθ (a10 cosϕ+a20sinϕ )+a30 cosθ +a00=0 , (10)

Using the substitution {sinθ=
1−t 2

1+t 2 ≥0,

cosθ=
2 t

1+ t 2 ,

(11)

we obtain the following equation

m4 t4
+(4 a30−m2) t

3
+2(2a33−m1+a00−r−2

)t 2
+(4a30+m2)t+(m4+2 m3)=0 , (12)
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where m1=a11 cos2ϕ+2a12sinϕ cosϕ +a22sin2ϕ , m2=4(a13cosϕ+a23sinϕ ) ,

m3=2(a10 cosϕ +a20sinϕ ) , m4=m1−m3+a00−r−2 ,andϕ ∈[ 0, 2π ) .

The intersection curve on the sphere consists of points satisfying equation (12). Since any point of
the intersection curve also belongs to the ellipsoid, we find its coordinates in the coordinate system

X ' by (12) and transform into the coordinate system X using (6). The internal coordinates of
the ellipsoid (u ,v ) are then

 { u=arccos
z
c

,

v=arccos
x

a sin u
sign( y) , v∈(−π ,π ] .

            (13)

The equation of the intersection curve in the coordinates of the ellipsoid has the form

ƒ(u , v)=(a sin u cosv− x0)
2
+(b sin u sin v− y0)

2
+(ccosu− z0)

2
−r 2

=0 . (14)

If both distances from the sphere center X⃗ 0 to the vertices (0 ,0 ,−c) and (0 ,0 , c) are less
than r or both distances  are  greater  than r , there is  a  range of  v∈(vmin , vmax) , for  which
equation (14) has two real solutions. Equation (14) has one solution for v=vmin and v=vmax .
Outside this range, equation (14) does not have real solutions. In this case it is necessary to know
the range of the variable v .

Figure 1: A view of the solid of the intersection along z axis for r = 8.1 (left) and r = 8.3 (right)

The Figure 1 shows the view of the solid of the intersection along z axis for r = 8.1 (left) and r = 8.3
(right), respectively. We see yellow ellipsoid, blue sphere,  and red intersection curve.  The axis of
the coordinate system X ' (x ' , y ' , z ' ) contains vectors V⃗ 1 ,V⃗ 2 (brown) and V⃗ 3 (red) with the
origin in the center of the sphere X⃗ 0 . The axes x (y) of the coordinate system of the ellipsoid is
green (blue) and has origin in the center of the ellipsoid point O. The axes z projected in the point

O. When the center of the sphere is at X⃗ 0
T
=(3.2 ,4.0 ,2.4) , the radius is 8.1, and the center of the

ellipsoid is at O⃗T
=(0,0,0) and semi-axes are (2,3,4), the intersection curve covers the z axis, and

the center of the ellipsoid is being projected inside the blue area, which is part of the surface of the
sphere. The parameter v accepts any value v∈[0 ,2π ) . This situation corresponds to Figures 8,
9, and  10 (middle figures) for  r  = 6,  r  = 7, and  r  = 8,  respectively.  In the case of  r =  8.3, the
intersection curve (red) does not cover the z axis, and the center of the ellipsoid is being projected
outside  the  blue  area.  The  parameter v shall  vary  in  the  range  of [vmin , vmax ]. This  situation
corresponds to the middle figures of Figures 4 to 7 and 11. The intersection curve is closed in the
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u-v plane. It is worth noting that  at points  when v=vmin or v=vmax , the  gradient vector of the
function has  a  component  only  along  the v axis.  Consequently,  we  obtain  the  equation
 ƒ (u , v )

 u
=0 which we rewrite using coordinates X⃗ as 

x (x−x0)+ y ( y− y0)+( z−z 0)(z−
c2

z
)=0 . (15)

In practice it is convenient to solve this equation together with the equations of the sphere and
ellipsoid and find (uk , vk ) using (xk , yk , zk ) , k=1,2 and the relations (13).

4 Basic Formulas

Let us consider the equations for the region on a quadric surface that is bounded by a given curve.
Let S 1 be a smooth three dimensional surface of the form ƒ(u , v)=0, where u and v range over
some  region Г with  v in  the  interval [vmin , vmax ] and  u in  the  interval [u1(v) ,u2(v)] . The
surface is defined parametrically by (x (u , v) , y (u , v) , z (u , v )) .
A region being a portion of the surface corresponding to the mentioned region is

s=∬
(Г )

J du dv , J=√EG−F 2 , where E=(
 x
u

)
2

+ (
 y
u

)
2

+ (
 z
 u

)
2

,

G=(
 x
 v

)
2

+ (
 y
 v

)
2

+ (
 z
 v

)
2

,  F=
 x
 u

 x
 v

+
 y
 u

 y
 v

+
 z
 u

 z
 v

.  

For all quadric surfaces this expression is integrated with respect to u .

Case 1
In case of a sphere, we have ƒ( x , y , z )=x 2+ y2+ z 2−r 2=0, x=r sinθ cosϕ , y=r sinθ sinϕ ,

z=r cosθ ,  J=r 2sinθ . We integrate this equation to obtain

s=∫
ϕ min

ϕ max

∫
θ 1(ϕ )

θ 2(ϕ)

r2 sinθ dθ d ϕ =r 2∫
ϕ min

ϕ max

(cosθ 2(ϕ )−cosθ 1(ϕ ))d ϕ . (16) 

Case 2

In case of an ellipsoid, we have ƒ( x , y , z )=
x2

a2+
y2

b2 +
z2

c2−1=0 ,

x=a sin u cosv , y=b sin usin v , z=ccos u ,
J=sin u √a2 b2cos2 u+c2sin 2 u(a2sin2 v+b2 cos2 v) .

Let t=cos u , h(v )=a2 sin2 v+ b2 cos2 v , H (v )=a2 b2−c2 h(v) , h1(v)=√H (v) .

Then J dt=√t 2 a2 b2
+ c2

(1−t 2
)h (v )dt .

Let g (t , v)= t√c2 h(v )+H (v )t 2
+

c2 h(v)
h1(v)

ln(h1(v) t+√c2h (v )+H (v )t 2
).  Then we have

s=∫
vmin

vmax

∫
sin u1(v)

sin u2(v)

√t 2 a2b2+ c2(1−t 2)h(v)dt dv=
1
2 ∫vmin

vmax

(g (sin u2(v) , v)−g (sin u1(v )) , v)dv .    (17)

We use formulas (16) and (17) to find the surface areas of the intersection solids bounded by the
curve. 
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5 Integration method: Examples

5.1. We consider the sphere of radius 2 whose center
is at (0,0,5), and the ellipsoid has its semi-axis (2,3,4)
and center is at (0,0,0) (see [6]). We note that θ=0
corresponds to the z-axis for the sphere, and note that
(θ ,ϕ ) is  chosen  such  that θ defined  by

equations (11) and (12), is continuous. The curve of
intersection of the sphere and ellipsoid is unique for
any ϕ . The area of the portion of the sphere inside
the ellipsoid is then Figure 2: The solid of intersection, example 5.1

S sp=∫
0

2π

∫
0

θ (ϕ)

r2 sinθ dθ d ϕ = r 2∫
0

2π

(1−cosθ (ϕ ))d ϕ . (18)

The integration  can  be  approximated  using  a  constant  increment ϕ i=
2π i

n
. We find θ (ϕ i)

from (12). The integral sum according to Simpson's formula is 

S (n)=
4π r2

3n
∑
i=1

n

k i(1−cosθ (ϕ i)) , k 2 i=1,k 2 i+ 1=2 . (19)

The accuracy of this approximation is proportional to n−5 . Therefore, a relative accuracy of 10–6 is
obtained by using at 35-50 calculation points. The calculation time is less than 10 seconds. 

The distance from the center of the sphere X⃗ 0 to the vertex (0 ,0 , c) is smaller than the radius
of  the  sphere.  Therefore,  the  vertex (0 ,0 , c) and u=0 belong  to  the  required  surface.  The
distance from the center  of the  sphere X⃗ 0 to the opposite vertex (0 ,0 ,−c) is larger than the
sphere radius. So the vertex (0 ,0 ,−c) and u=π is outside the surface. The surface area of the
portion of the ellipsoid inside the sphere calculated by formula (17), where cos u2(v) is 1. Then

 S el=
1
2
∫

0

2π

( g (1,v)−g (cos u(v) , v))dv .         (20)

The  total  integral  consists  of  the  area  of  the  curvilinear  triangles  for  which  Using  Simpson’s
formula we see that 

S (n)=
2π
3n
∑
i=1

n

k i(g (0,v i)−g (cos u(vi) , v i)) , (21)

where v i=
2π i

n
, k i=1 if i is even, and k i=2 if i is odd.

The accuracy of the summation is again proportional to n−5 . If the number of calculation points is
greater than 33, the error in the calculation is significantly less than 10−8.
This example focuses on how to verify calculation accuracy since the integrals can be approximated
in several ways. For example, in [2, Example 1], the area of the relevant portion of the sphere is
found to be 5.403 and the area of the relevant portion of the ellipsoid is 5.821.

We note that the exact solution for the surface area of the sphere defined in this section has the 11
significant figure approximation to 5.4028467054, and we obtain an answer of 5.4028467060 by
using the standard calculation from this section when 152 points are used.  Similarly,  the exact
solution  of  the  surface  area  for  the  ellipsoid  has  the  11  significant  figure  approximation  to
5.8210351042, and we obtain an answer of 5.821035103 by standard calculation mentioned in this
section when 152 points are used.
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5.2. Assume the  center  of  a  sphere  of  radius  r =  2.2573  is  located  at X⃗ 0=(1,2 ,3) , and  the
ellipsoid semi axes are (2, 3, 4) (see [7]). The calculation is performed as described in section 5.1.
The coordinate system for the sphere is set automatically by the equation (5). We find the surface
area belonging to the ellipsoid to be approximately 13.8364, and the surface area belonging to the
sphere to be approximately 13.83697. These values are in close agreement with those given in [2,
Example 2], where it was reported that the surface areas for ellipsoid and sphere, when r = 2.2574,
are approximately 13.827 and 13.838, respectively. 
We assume the relative error in the calculation is based on the number of points n and the formula

δ (n)=
| S (n)−S |

S
, where  S is  the true value of the area.  If the parameter n2δ (n) is constant,

the accuracy of the calculation is of order n−2 . Under this assumption, the estimation of the true
value of the area S is obtained by the formula

S≈S (2n)+
S (2n)−S (n)

3
. (22)

For the area of the ellipsoid, the relative error in the present calculation δ (n) is approximately
n−2 , and it should decrease with increasing n if the accuracy is higher. As shown in Table 1, the

parameter n2δ (n) is approximately constant. 

n 52 152 302 602

Ellipsoid δ (n)n2 1.5 1.5 1.6 1.4

Sphere δ (n)n2 % 0.0005 <0.0001 <0.0001 <0.0001

Table 1

Figure 3: The solid of intersection, example 5.2

6 Integration issues
This section discusses important details of the integration methods used to determine the surface
areas  of  the  solid  of  intersection.  These  issues  include  the  choice  of  the  integration  steps  and
increments, the manner in which certain extreme regions in the integration domains are treated, and
the different summation methods used to obtain approximate values for the relevant integrals.

6.1 Solid of Intersection

Assume the center of a sphere is located at X⃗ 0=(3.2 ,4,2.4) and the ellipsoid semi axes are (2, 3,
4). The calculation of the area of the portion of the sphere inside the ellipsoid is performed as in the
previous examples. For r = 2.9 the ellipsoid does not have a vertex which belongs to the solid of the
intersection. So we need to use formula (17) for the calculations. The integral sum is determined by
the fragments of the integration area. The fragmentation for r = 2.9 is shown schematically in the
middle graph of Figure 4. It consists of a number of strips and the two end zones, shown in blue and
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red,  respectively.  The  integral  sum  contains  the  areas  of  n curved  strips

v∈[v i , v i+1] , u∈[u1(v i+1/2) , u2(v i+1 /2)] , vi+1 /2=
v i+1+v i

2
and two segments of a circle, one of which

is  red  and  located  between v=vmin and v1 , and  the  other  is  located  between v=vn and
v=vmax , which is shown in blue.

6.2 Choice of the integration step

The typical shape of the integration domain somewhat resembles that of a circle. In order to place 
the calculated points fairly evenly on the curve we use the formula:

v i=
vmax+ vmin

2
+

vmax−vmin

2
cos

π i
n+ 1

. (23)

To check the accuracy with different choices of the integration model we carried out studies for the
randomly  chosen  function ζ (x , y )=−sin2( x+ 2 y)cos (3 x+ 2 y ) y . We  used  some  nontrivial
functions and result was the same. We evaluated the integral

I= ∫
x2
+ y2

≤1

ζ (x , y )
 y

dx dy .

The value of the integral calculated using Maple, is I≈0.41992728 . For each xi we calculate two
values ζ i=ζ (x i ,−√1−x i

2
) , and ζ ˚ i=ζ ( x i ,√1−x i

2
). The  difference  between  them  is

Δζ i=ζ ˚ i−ζ i , Δζ 1=Δζ n+1=0 , using which we then find the integral sum. Table 2 shows the
results  of  the  calculations.  Line  2  corresponds  to  the simple  integral  sum,

I 1(n)=∑
1

n

h Δζ i ,  where h=
2
n
=xi+1−x i . Line  3  corresponds  to  the  Simpson  integral  sum

I 2(n)=∑
1

n
h
3

k iΔζ i , where h=
2
n

, k2 j=2,  and k 2 j+1=4 . Line  4  corresponds  to  the  integral

sum  I 3(n)=∑
1

n−1 Δζ i+1+Δζ i

2
(x i+1−x i)+

2
3
Δζ 1(x1+1)+

2
3
Δζ n(1−xn). We  performed numerical

simulations using different numbers of points n and find the relative error in the calculation based

on the number of points, that is,  δ k (n)=
I− I k (n)

I
, being  expressed as a percentage. It is seen

that our model calculation with a constant step leads to very large errors. The calculation of the
selected variable step has significantly greater accuracy and typically has accuracy of order n−2 .

n 25 50 100 200

δ 1(n
2δ 1) 3.96% (2477) 1.5% (3729) 0.54% (5420) 0.19% (7761)

δ 2(n
2δ 2) 3.96% (2477) 2.31% (5788) 0.85% (8585) 0.31% (12400)

δ 3(n
2δ 3) 0.160% (100) 0.052% (130) 0.014% (147) 0.0039% (156)

Table 2

6.3 Estimation of the Area of the Extreme Portions of the Integration Domain
We turn our attention to an extreme portion of the integration domain located between v=vmin

and v1 . We approximate  the  intersection  curve ƒ(u , v)=0 using  a  quadratic  function  which
passes  through  the  points (v min , u(vmin)) , (v1 , u2(v1)) , (v1 , u1(v1)) . We  use  the  following
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formula to approximate the  area of the region  of the parabola, which is used to approximate the
surface area of the ellipsoid as follows: 

dsel≈
2
3
(g (cos(u2(v1)) , v1)−g (cos (u1(v1)) , v1))(v1−v min). (24)

We estimate the area for the domain of integration between v=vn and v=vmax .

6.4 Integral sum formula

We  consider  a  term  of  the  integral  sum dS i=∫
xi

x i+1

y ( x)dx for  a  variable  integration  step.  We

approximate the integrand in the interval [ xi , x i+ 1] using a quadratic function and require that the
function  interpolate  the  points (x i , y i) and (x i+1 , yi+1) and  that  it  is  close  to  the  points
(x i−1 , yi−1) and (x i+ 1 , yi+ 1) in a least squares sense. Let ye( x) be estimation for y (x ):

ye=μ (x− x i)
2
+(

yi+1− y i

xi+1−x i

−μ (x i+1+ xi))(xi+1−x i)+ yi ,  (25)

where μ=−
ξ (x i−1)η (x i−1)+ ξ ( xi+ 2)η (x i+ 2)

ξ 2
(x i−1)+ ξ 2

( x i+ 2)
,

ξ ( x)=x2
+ (x i+ 1+ xi) x−x i+ 1 xi ,

η (x )= y i+ 1

x i− x

x i+ 1− x i

− yi

xi+1−x

x i+ 1−x i

− y ( x) .

dS i≈∫
x i

x i+1

ye (x )dx=
yi+1+ y i

2
( x i+1− x i)−

μ
6
(x i+1−x i)

3 . (26)

With the integral error of h2 replaced by the integral sum trapezoidal method we obtain

dS i=∫
xi

x i+1

y ( x)dx≈
y i+ 1+ yi

2
(x i+ 1−x i). (27)

We estimate the sum of the form S=dS (0)+∑
i=1

n

dS ( i)+dS (n+1) , where

 dS (0)=
2
3

ds1(v1−vmin) , dS (i)=
dsi+dsi+1

2
(v i+1−v i) ,

dS (n+1)=
2
3

dsn+1(vmax−v n) , v i=
vmax+vmin

2
−

vmax−vmin

2
cos

iπ
n+1

, and obtain

ds i=g (cos (umin(vi) , v i))−g (cos (umax(v i) , v i)) . (28) 
In the calculations the coordinate system is defined by the equations of (4) and (5). Table 3 shows

the values of the parameters δ (n)=100 (
S (n)

S
−1) , S≈2.209234 , and n2δ (n) for r=3.1.

n 25 50 100 200

S 2.203862 2.207886 2.208882 2.209146

δ (n) 0.24% 0.061% 0.016% 0.004%

δ (n)n2 1.52 1.53 1.60 1.60

Table 3
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6.5 Results

We perform calculations for the sphere with fixed center and a fixed ellipsoid. We change the radius
of the sphere and the method of calculating the area of the ellipsoid (as well as the method of
rendering its image in GInMA). In separate calculations, instead of the ellipsoid (a ,b , c) and the
sphere (k ,l ,m) we use the ellipsoid (a , c , b) and the sphere (k ,m , l) . We found the distance
from  the  point X 0 to  some  of  the  vertices  of  the  ellipsoid  to  be d ≈2.879132116 ,

D≈8.770649392. The  closest  vertex  to  the  point X⃗ 0 is  at  (0 , b ,0) , a  distance  of
d min≈4.123105626 . The distance to the vertex (0 ,0 , c) is d с≈5.179880467 . The maximum

distance to the vertex (0 ,0 ,−c) is 8.197560613.

The calculation results are made in [8] and shown in Figures 3-10 and Table 4. In the first column
of Table  4,  the specification of the ellipsoid and the radius  of the sphere are  given.  S (2 ,3,4)
corresponds  to a=2 , b=3,c=4 ,  and  to  the  center  of  the  sphere  at  the point

X⃗ 0
T
=(3.2 ,4.0 ,2.4). S (2 ,4,3) corresponds to the change of the original  coordinate  system

axes  for a=2 , b=4,c=3, and X⃗ 0
T
=(3.2 ,2.4 ,4.0). Columns  2-4  correspond  to  different

numbers of calculation points. Column 2 shows the calculation using 50 points, column 3 using 100
points, and column 4 using 200 points. Column 5 is obtained by extrapolation of formula (22). The
top number in each cell gives the surface area of the ellipsoidal piece of the intersection solid while
the lower number shows the surface area of the spherical piece. The pairs of calculations with the
same  radius  for  the  sphere show  how  the  accuracy  of  the  calculation  changes.  For  the  radii

r=4.5 and  r=5, we  have d min<r≤d c , and  the  intersection  curve  does  not  separate  the
vertices in the coordinate system for a=2 , b=3,c=4. At the same time, in the coordinate system

S (2, 4,3) ,  the intersection curve divides the vertices. Therefore, the accuracy of calculations
with a small number of calculation points varies considerably but the extrapolated results are the
same.

The relevant figures are given after Table 4. Each figure contains three images. The left  image
obtained using Maple shows the curve of intersection using the coordinates of the sphere (θ ,ϕ ) ,
with θ located on the horizontal axis and ϕ located on the vertical axis. The curve is of the
same type in all of the figures; exactly one value θ (ϕ )∈(0,π ) exists for any ϕ ∈[ 0, 2π ) .

The center image, obtained using Maple, shows the intersection curve in the coordinates of the
ellipsoid (u ,v ) , with u located on the horizontal axis and v located on the vertical axis.  For
small and large radii the curve is close to a circle. For intermediate radii v∈[0,2π ) in order for
the  curve  to  be continuous,  it  must  be the  case  that v∈(−π ,2π ) , and values  that  differ  by

2π correspond to the same point on the surface.

The right image, obtained using GInMA, shows the solid of the intersection. For small radii, for
example r=2.9 , the intersection solid looks like a disk and the surface area of the ellipsoid piece
is slightly smaller than that of the spherical piece. By increasing the radius the difference between
the surface areas decreases monotonically and when r≈3.095 the surface areas become the same.
When  the  radius  is  approximately d min the  intersection  solid  is  located  close  to  the  axis  of
ordinates. When r=d min the intersection curve passes through the point (0, b ,0) . Furthermore,
the intersection solid monotonically becomes the ellipsoid. 

Note  that  in  the  entry  in  Table  4  for r=5 and S (2 ,3,4) . In  this  case  the  border  does  not
separate the ellipsoid vertices, the calculation accuracy is low and the correct result is obtained only
by extrapolation or by using a number of points much greater than 300. On the other hand, when
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S (2 ,4, 3) ,  X⃗ 0
T
=(3.2 ,2.4 ,4.0) and r=4.5 ,5  or 6, the boundary separates the vertices, the

accuracy of computation will be achieved when n = 100. In other words, the respective portions of
the surface areas for ellipsoid and sphere stay unchanged when n ≥ 100 in this case.
On  the  other  hand,  we  note  for r=7 in  both  cases,  the  intersecting  curve  runs  between  the
vertices of the ellipsoid, the accuracy for both cases stays the same.

n 50 100 200 ∞
S (2 ,3,4) r=2.9

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

0.202102
0.20228133

0.202193
0.20228133

0.202217
0.20228133

0.202225
0.20228133

S (2 ,3,4) r=3.095

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

2.156223
2.15745038

2.157192
2.15745038

2.157446
2.15745038

2.157531
2.15745038

S (2 ,3,4) r=4

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

12.844892
12.040128

12.850634
12.040128

12.852143
12.040128

12.852643
12.040128

S (2 ,3,4) r=4.5

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

19.996242
17.327758

20.005151
17.327758

20.007496
17.327758

20.008278
17.327758

S (2 ,4,3) r=4.5

X⃗ 0
T
=(3.2 ,2.4 ,4.0).

20.008265
17.327758

20.008301
17.327758

20.008301
17.327758

20.008301
17.327758

S (2 ,3,4) r=5

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

28.124322
21.8750020

28.136841
21.87500120

28.140160
21.87500120

28.141237
21.87500120

S (2 ,4,3) r=5

X⃗ 0
T
=(3.2 ,2.4 ,4.0).

28.141305
21.875000

28.141270
21.875001

28.141270
21.875001

28.141270
21.875001

S (2 ,3,4) r=6

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

47.433904
27.004988

47.431412
27.005004

47.431404
27.005004

47.431401
27.005004

S (2 ,4,3) r=6

X⃗ 0
T
=(3.2 ,2.4 ,4.0).

47.431391
27.005004

47.431404
27.005004

47.431404
27.005004

47.431404
27.005004

S (2 ,3,4) r=7

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

70.265887
24.596703

70.265878
24.59663903

70.265878
24.59663903

70.265878
24.59663903

S (2 ,4,3) r=7

X⃗ 0
T
=(3.2 ,2.4 ,4.0).

70.265882
24.596704

70.265878
24.596639

70.265878
24.596639

70.265878
24.596639

S (2 ,3,4) r=8

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

94.5444568
13.562497

94.544456
13.56254318

94.544456
13.56254318

94.544456
13.56254318

S (2 ,3,4) r=8.5

X⃗ 0
T
=(3.2 ,4.0 ,2.4)

105.925459
5.183001

105.922890
5.18299733

105.922218
5.18299733

105.922000
5.18299733

Table 4
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Figure 4: Intersection curves on the sphere and ellipsoid and intersection solid for r=2.9

Figure 5: Intersection curves on the sphere and ellipsoid and intersection solid for r=3.095

Figure 6: Intersection curves on the sphere and ellipsoid and intersection solid for r=4

Figure 7: Intersection curves on the sphere and ellipsoid and intersection solid for r=5
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Figure 8: Intersection curves on the sphere and ellipsoid and intersection solid for r=6

Figure 9: Intersection curves on the sphere and ellipsoid and intersection solid for r=7

Figure 10: Intersection curves on the sphere and ellipsoid and intersection solid for r=8

Figure 11: Intersection curves on the sphere and ellipsoid and intersection solid for r=8.5
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We note two features of the GInMA images. Since the CAS of GInMA does not allow the solution
of equations of degree to be higher than four, we need to perform two operations manually. In the
second step of an active drawing in GInMA file. We need to put the points H and H' in positions to
show perpendiculars to the surface of the ellipsoid passing through the point X⃗ 0 . The violet curve
on the yellow ellipsoid shown on the left of Figure 12 is the locus of the point H and the blue curve
is  the  locus  for  the  point  H'.  Accordingly,  the  points  H and  H' allow the  GInMA program to
construct the spherical part  inside the ellipsoid. At step 6 of an active drawing in GInMA file, we
need to move the points A and B to the top and bottom of the intersection curve, respectively (see
the right of Figure 12). These allow GInMA to fill the surface of the ellipsoid for cases when the
vertices (0 ,0 , c) and (0 ,0 ,−c) are not divided by the intersection curve. We note that if these
points are not on the top and bottom as seen in the middle of Figure 12, GInMA possibly can show
only part of the ellipsoidal surface.

Figure 12: Active points in GInMA help to get correct solid of the intersection

6.6 The self-intersection point on the line of intersection

We consider the center of a sphere located at X⃗ 0
T
=(3, 4,2) and the ellipsoid with semi-axes of

(2,3,7). This case will be referred to as Solid 1. For comparison purposes, we call the Example 3 in

[2], when the center of a sphere is at X⃗ 0
T
=(3.1 ,3.35 ,2.35) and the semi-axes of the ellipsoid are

(2,3,7.4), as Solid 2.
To find the point of self-intersection for Solid 1, we solve the equation (2) for λ, and use it to find
the radius of the sphere. It has four solutions. The smallest (rmin ≈ 2.50000) and the largest (rmax ≈
10.45295) distance values define the range of the radius for which the intersection of the surfaces
may  exist.  Radius  r ≈ 7.519658  defines  the  point  of  self-intersection  C with  the  coordinates
(−0.57963,  −2.29261, 4.03336). Solution r' ≈ 7.55098 determines the radius at which the second
loop of the curve of intersection disappears. For the Solid 2 we obtain the smallest (rmin ≈ 2.19656)
and the largest (rmax ≈10.86524) distance values, radius r ≈ 7.00206, the point of self-intersection C
(−0.689727, −2.323140, 3.925523) and r' ≈ 7.15438. We refer to the point D on the right of Figure
12 and note that D is at the tangent of the intersecting curve and u=constant. At the point D, u has

extremal value. The corresponding equation can be obtained from the condition 
 ƒ (u ,v )

 v
=0 or
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∣
x
a2

y
b2

z
c2

x− x0 y− y0 z−z0

x− x0 y− y0 z−z 0+r
∣=0, or a2

(x−x0) y=b2 x ( y− y0) .

The surface of the  elliptical piece  is calculated  as  in previous cases.  The surface of the  spherical
piece is divided into two pieces within each of the loops. Since these two pieces have two respective
acute angles at C (see right of Figure 13), we need to construct two separate coordinate systems for
each loop. The z-axis we choose for each system should be close to the bisectors of the acute angle
at C and the center of the loop.

Figure 13: Intersection curves on the sphere and ellipsoid (2, 3, 7) and intersection solid. 

We describe how we optimize the choices of A and B with the help of GInMA as follows:
1. We first select the points A and B in the interior of two separate intersecting loops respectively.

2. We drag the points A and B to achieve the best uniform shading of those two intersecting surface
area of the sphere.
3. We use the direction X0A as the z-axis when calculating the portion of the surface of the sphere
with GInMA, which contains the intersecting loop with point A in it. Next, we set the point F to be
on the ray of  X0A. Similarly, we use the direction  X0B as the  z-axis for the second loop and use
GInMA to calculate the portion of the surface of the sphere, which contains the intersecting loop
with point B in it. Finally, we set the point E to be on the ray of X0B.

4. We use these positions E and F in Maple for calculating the surface area for the sphere. We note
the Maple file in [9], we use E as the pointE and F as the pointF.
The  surface  area  of  the  ellipsoidal  piece  is  divided  into  three  parts.  Two parts  are  inside  the
intersection curve loops and the third is the remaining portion of the ellipsoidal surface. We define
the area within the loops. The area of the intersection solid is obtained by subtracting the area
within  the  loops  from the  surface  area  of  the  ellipsoid.  We find  the  intersection  curve  on  the
ellipsoid by solving the set of initial equations under the condition u > uc for one loop and u < uc for
the other loop, where uc is the coordinate of point C.

Figures  13 and 14 show the appearance  of  the  solid in  space,  the  curve of  intersection  in  the
coordinates of the sphere and  in  the  coordinates of the ellipsoid. Accuracy of the calculations  is
determined by the convergence of the solution when the number of  calculation points  is varied.
Accuracy of the calculations is also determined by comparison with the results of [2] for Solid 2. 
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Figure 14: Intersection curves on the sphere and ellipsoid (2, 3, 7.4) and solid of intersection.

The set of calculations for  Solid 1 and Solid 2 are  shown in  Table 5. We vary the number of  the
calculation points and show the results in table columns, where the area of the ellipsoid is shown in
the upper value and the area of the sphere is shown in the lower value in each cell. We use equation
(22) to obtain the values for infinity in the last table column.

n 100 300 550 ∞
   Solid 1: S (2 ,3,7) ,

X⃗ 0
T
=(3,4,2) and r ≈ 7.519658.

125.7601
28.8371

125.5526
28.8109

125.5003
28.8149

125.48
28.816

   Solid 2: S (2 ,3,7.4) ,

X⃗ 0
T
=(3.1 ,3.35 ,2.35) and r ≈ 7.00206.

119.5152
32.2572

119.2160
32.27038

119.1462
32.27401

119.123
32.2743

Table 5

These values are in close agreement with those given in [2, Example 3]. The surface area of the 
relevant portions for the ellipsoid and the sphere are respectively 118.88 and 32.44.

7. Methods of finding solutions 
Most of the methods we describe in this paper apply numerical integration schemes based on Maple
in conjunction with the powerful visualization program GInMA. A problem that arises lies in the
fact that for complicated geometrical problems it is typical that  relevant equations do not admit a
unique solution.  We can solve  quite  complicated  equations  with Maple but  usually there is  no
assurance that we are using the correct root. In such case, we use GInMA visualization capability to
eliminate such extraneous root(s). It is important that the same computational grid, which is used to
calculate the area, is  being  used to paint the surface. An example of such a situation is shown in
Figure 10 on the right, the intersection solid image when r=8. Three features of the solution can
be seen in this case. Firstly, the half of the ellipsoid surface lying opposite the boundary curve is
lost. Secondly, an issue arises that requires a formal decision. It arises in conjunction with covering
the part of the ellipsoid located outside the intersection solid. Thirdly, the reference points on the
surface near the intersection curve above  H' have a big step. This is  clear by the form of a blue
sphere which “peeps” through the holes in the yellow surface of the ellipsoid and by the "ribbing"
of this part of the ellipsoid surface. During the calculation of the area such ribbing corresponds to a
rapid decrease in calculation accuracy when we reduce the number of calculation points. 
The equations in Maple and GInMA programs are written the same way and transferred from one
program to  another  using  “copy-paste”  so  the  developer  can  be sure of  the  correctness  of  the
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calculation. Additionally, in deriving the equations of the intersection curve, the visual observation
of the curve allows the developer to feel confident because the slightest  breach is  immediately
visually  observed  (especially  since  the  solution  will  be  observed  to  jump from one branch  to
another). If the response can be observed, it is usually easier to find a "cure." During the creation of
the Maple worksheets for this paper, step by step calculations and their GInMA visualizations have
been performed.  The worksheets demonstrate  high performance and the ability to calculate  the
location of any variant of the sphere relative to the ellipsoid (assuming that its center lies outside
the ellipsoid). This illustrates the power of the approach used.

8. Conclusions 
A numerical procedure to quickly calculate the surface area of the intersection solid of a sphere and

an ellipsoid has been discussed. Achieved accuracy of the calculation is close to δ (n)n2∼1 and

δ (n)∼10−5 for 300 calculation points. The calculation time for one solid usually is less than a
minute on a typical university computer.  A method was proposed for the numerical  integration
based on distributing calculation points obtained using the cosine law. It was theoretically justified

and numerically confirmed that the calculation accuracy is of order n−2. It was demonstrated that
the numerical results agree with our earlier results given in [2].

The ability to visualize the results of calculations using a curve or a surface greatly assists in the
choice of when the defining equations have multiple  solutions.  This situation is  typical  for the
numerical computation of problems associated with complicated spatial 3D constructions. Joint use
of a CAS such as Maple and a powerful visualization program such as GInMA can significantly
decrease the time for the development of the solution.

The first step of the calculation is that of finding a range of radii for which the curve of intersection
exists. This requires the solution of an equation of sixth degree and finding two of its real roots
corresponding to the internal and external  osculation of the ellipsoid and a sphere with variable
radius  and fixed  center.  Since  GInMA currently allows  only the  solution  of  the  fourth  degree
equation,  an element  of manual  management  is  integrated in  the solution.  When possible,  user
should manually adjust the points so that the perpendiculars constructed from these points intersect
with the  center of the  sphere. Thus these points become the bases of the perpendiculars dropped
from the sphere center to the ellipsoid. These points can then be used to construct the solid of
intersection. 
The  accuracy  of  the  calculation  becomes  significantly  better  if  the  vertices (0 ,0 , c) and
(0 ,0 ,−c) are divided by the intersection curve. If the  radius of the  sphere is greater than the

distance to some vertex but smaller than the distances to the vertices and it is advisable to rename
the axes and to choose for the axis the one which passes through the vertex closest to the sphere’s
center. Similarly, if the sphere radius is smaller than the distance to some vertex but greater than the
distances to the opposite vertices, it is advisable to rename the axes using for the  z axis the one
passing through the vertex farthest from the sphere’s center. It transforms case shown in Figure 1 on
the right in the case shown in Figure 1 on the left, transforms the range of v∈[vmin, vmax] to the range
of v∈[0, 2π). Finally, we note that if the surface area of the intersection solid is substantially greater
than the half of the ellipsoid (or the sphere), it is advisable to find the surface area of the remainder
of the ellipsoid, find the total ellipsoid area and subtract remainder from the total ellipsoid area.

361



The Electronic Journal of Mathematics and Technology, Volume 7, Number 5, ISSN 1933–2823

9. References

[1] G.A.Korn, and T.M.Korn. Mathematical Handbook for Scientists and Engineers. Definitions,
Theorems,  and Formulas  for  Reference and Review.  DOVER PUBLICATIONS, INC. Mineola,
New York.

[2] S. Thompson, W.–C. Yang, and V. Shelomovskii. The Intersection of a Sphere and an Ellipsoid, 
A First Approach, Electronic Journal of Mathematics and Technology (eJMT), Issue 1, Vol.7, 2013.
[3] W.–C. Yang, and V. Shelomovskii, Mean Value Theorems in Higher Dimensions and Their 
Applications, Electronic Journal of Mathematics and Technology (eJMT), Issue 1, Vol.6, 2012.

Software Packages
[4] [Maple] A product of Maplesoft, http://www.maplesoft.com/.
[5] [GInMA] GInMA, 2012, S. Nosulya, D. Shelomovskii, and V. Shelomovskii.
http://deoma  –cmd.ru/en/Products/Geometry/GInMA.aspx  

Supplemental Electronic Materials
All GInMA supplemental materials that accompany this paper can be used from figures. 
Install the GInMA software from the website and click on the picture.
[6] V. Shelomovskii, Maple worksheet for section 5.1.
[7] V. Shelomovskii, Maple worksheet for section 5.2.
[8] V. Shelomovskii, Maple worksheet for section 6.5.
[9] V. Shelomovskii, Maple worksheet for section 6.6.

362

http://www.maplesoft.com/
http://deoma-cmd.ru/en/Products/Geometry/GInMA.aspx
http://deoma/
https://php.radford.edu/~ejmt/v7n5p1/Example5.1.mws
https://php.radford.edu/~ejmt/v7n5p1/Example5.2.mws
https://php.radford.edu/~ejmt/v7n5p1/Example6.5.mws
https://php.radford.edu/~ejmt/v7n5p1/Example6.6.mws

